An die
Mitarbeiter des AA I WA
mit der Bitte um STELLUNGNAHME
bis zum 20.00. AGA
NAWI aus fr. Dr. Weend Hannover, 06.10.1998

DIN 38406-29:

Bestimmung von 61 Elementen durch Massenspektrometrie mit induktiv gekoppeltem Plasma (ICP-MS) (E29)

Basisvalidierung genormter Verfahren zur Wasser-, Abwasser- und Schlammuntersuchung

Genormte Verfahren gelten nach ihrer Erstellung als validiert.

Nach DIN EN ISO 8402 ist "Validierung" definiert als: "Bestätigen aufgrund einer Untersuchung und durch Bereitstellung eines Nachweises, daß die besonderen Forderungen für einen speziellen, beabsichtigten Gebrauch erfüllt worden sind".

Die hier beschriebene Validierung von Normverfahren (im folgenden "Basisvalidierung" genannt) kann nicht den gesamten Validierungsprozeß abdecken. Sie beschäftigt sich lediglich mit den im Zuge der Erstellung eines Analysenverfahrens notwendigen Validierungsschritten.

Ziel der Basisvalidierung ist es, durch gemeinsame Untersuchungen der am Normungsprozeß beteiligten Laboratorien nachzuweisen, daß das genormte Verfahren in der täglichen Praxis die Anforderungen der vorgesehenen analytischen Anwendung erfüllt. In die Validierung werden deshalb neben den reinen Verfahrenskenndaten auch solche Erfahrungen aus dem Normungsprozeß einbezogen, die den Analytiker über die experimentellen Grundlagen informieren und ihm wertvolle Hilfen bei der Anwendung der Norm bieten.

Die weiteren notwendigen Validierungsschritte (Vergleich mit den Qualitätsforderungen des Auftraggebers und der Nachweis ihrer Erfüllung) müssen in der praktischen Anwendung durch den Anwender erbracht werden.

Um die Basisvalidierung nachvollziehbar zu machen, sollen in einer besonderen Dokumentation zu den einzelnen Abschnitten der Norm erläuternde Angaben gemacht werden. Diese Erläuterungen zum Validierungsprozeß sollten bereits bei der Normerstellung beachtet werden. Die Normenvorschrift selbst wird nur die Ergebnisse der Validierung enthalten.

Bei der Durchführung und Auswertung von Ringversuchen sollte beachtet werden, daß diese Versuche nicht nur das Ziel haben, Aussagen zur Reproduzierbarkeit zu machen, sondern daß sie auch dem Nachweis dienen, ob die Methode in verschiedenen Labors brauchbare Ergebnisse liefert und praktikabel ist.

Neben diesen Angaben sollte die Dokumentation Auskunft darüber geben, aufgrund welcher Überlegungen und Prüfungen die Anwendung gesundheits- und umweltschädigender Reagenzien und Lösemittel vermieden bzw. minimiert wurde. Falls erforderlich, sind Hinweise zum Arbeitsschutz und zur Entsorgung von Abfallreagenzien zu geben.

Die Erläuterungen werden vom jeweiligen Obmann eines Normungsarbeitskreises vor der Verabschiedung der Norm zum Weißdruck erstellt und beim Obmann des I W 1 hinterlegt. Den Obleuten wird empfohlen, aus Gründen der Rückverfolgbarkeit die Rohdaten zur Basisvalidierung (z.B. Kalibrierkurven, Zertifikate zu Referenzmaterialien) zu archivieren. Die Dokumentation wird auf Anfrage zugänglich gemacht.

Zu den einzelnen Abschnitten einer Norm sollen - sofern erforderlich - qualitätsrelevante Erläuterungen gegeben werden. Die folgende Aufzählung stellt keinen verbindlichen Leistungskatalog dar; Auswahl und Umfang der Erläuterungen müssen dem angestrebten Normungsziel angepaßt werden.

1. Anwendungsbereich

Erfaßte Parameter: 61 Elemente

Für die in dieser Norm nicht erfaßten Elemente liegen besondere Situationen vor:

Titan besitzt fünf stabile Isotope, von denen das Hauptisotop ⁴⁸Ti aber auch alle anderen Isotope (46, 47, 49 50) speziell durch in Wasserproben fast immer vorhandenen Schwefel (z.B. als Sulfat) gestört werden. Darüber hinaus existiert für die Messung von Titan mit der ICP-OES Norm (E22) ein sehr geeignetes Verfahren.

Eisen besitzt drei Isotope mit sehr geringer Häufigkeit. das Hauptisotop ⁵⁶Fe ist bei den Quadrupolgeräten durch das Plasmagas (Bildung von Argonsauerstoff) stark gestört.

Niob und Tantal sind im analytischen Alltag nur selten gefragt. Darüber hinaus ist für diese Elemente in aller Regel eine separate Probenvorbereitung mittels Flußsäure erforderlich, da wäßrige Meß- und Kalibrierlösungen sehr instabil sind. (Verringerung der Konzentration im Stundenbereich). Prinzipiell lassen sich Niob und Tantal in flußsauren Lösungen sehr gut messen.

Osmium ist prinzipiell meßbar, sofern man kein flüchtiges Osmiumtetroxyd vorliegen hat. Auch Osmium ist im analytischen Alltag nur selten gefragt. Darüber hinaus erfordert die Analyse von Osmium gesonderte Erfahrungen, die im Kreis der Teilnehmer dieses AK nicht vorhanden waren.

Quecksilber: Auch für Quecksilber ist eine separate Probenvorbereitung notwendig. Da Quecksilber in sehr unterschiedlichen Formen vorliegen kann, ist das Handling in der ICP-MS nicht unkritisch.

Weiterhin sah der Arbeitskreis keine Notwendigkeit Quecksilber in die Norm aufzunehmen, da eine sehr gute AAS-Norm für dieses Element vorliegt. Grundsätzlich läßt sich Quecksilber allerdings mit der ICP-MS bestimmen.

Die Elemente der Laboratmosphäre und alle Edelgase, die im Trägergasstrom vorhanden sind, lassen sich ohne besondere Vorrichtungen zur Abtrennung dieser Gase nicht analysieren.

Fluorid, Chlorid, Silicium, Phosphor und Schwefel sind aus unterschiedlichen Gründen (Bestandteil der Matrix, Nachweisvermögen, Störungen) nicht mit dieser Technik nicht im unteren Spurenbereich zu analysieren.

Ansonsten sind alle übrigen stabilen Elemente in dieser Norm erfaßt.

Arbeitsbereich

geprüfte Matrices :

im Rahmen des Ringversuchs zur Bestimmung der Kenndaten wurden folgende Matrices geprüft:

1 natürliche Wasserprobe mit Aufstockungen in geringen Konzentrationen (siehe Anlagen 9 und 10)

2 Königswasseraufschlußlösung (siehe Anlage 9)

3 Synthetische Testlösung (siehe Anlage 9)

Darüber hinaus wurden im Rahmen der Arbeit des AK's eine Reihe weiterer Abwässer untersucht (AK interne Ringversuche; Ergebnisse liegen beim Obmann).

geprüfter und kalibrierter Konzentrationsbereich

Da bei diesem Verfahren ein streng linearer Zusammenhang zwischen Intensität der Ionen und der Konzentration der zu bestimmenden Elemente über mehrere Zehnerpotenzen besteht, wurde im Rahmen des Ringversuchs lediglich der Bereich zwischen unterem Anwendungsbereich und oberen Kalibrationspunkt (Größenordnung bis \max . 1000 $\mu g/L$) getestet.

Selektivität / Spezifität :

Im Vergleich zu anderen atomspektrometrischen Verfahren, z.B.: der ICP-OES sind die Signale im Massenspektrum wegen der sehr genau bekannten Isotopenverhältnisse der Elemente in der Regel sehr selektiv. Eine Zuordnung ist in diesem Verfahren wesentlich einfacher als in der ICP-OES. Erschwert wird diese lediglich durch Störungen der Signale (siehe Norm Kapitel über Störungen) durch Molekülionen oder bei monoisotopischen Elementen (z.B. ⁵⁵Mn).

mögliche Erweiterungen des Verfahrens

Für diese Anwendungen gilt die Basisvalidierung nicht. Die mögliche Erweiterung zu höheren Konzentrationsbereichen ist von dem Gerätetyp abhängig (Behandlung von hohen Ionenströmen, Totzeit des Detektors) und von Störungen durch andere Innen und eventuell durch Memoryeffekte. Im Idealfall empfiehlt sich eine einfache und sehr präzise auszuführende Verdünnung.

Die mögliche Erweiterung zu niedrigeren Konzentrationsbereichen ist vor allem von sauberen Reagenzien abhängig, erst in zweiter Linie von der Empfindlichkeit des Gerätes.

Die möglichen Matrixeffekte sind durch Verdünnung der Lösungen und/oder durch angepaßte Kalibrierlösungen auszugleichen.

2. Störungen

Auf mögliche Störungen und deren Vermeidung wird in der Norm ausführlich eingegangen. (siehe hierzu Kapitel 5, Tabellen 2, 3 und 4 sowie die Anlagen 2 bis 6). Darüber hinaus gibt es zahlreiche Veröffentlichungen in der Fachliteratur zu diesem Thema (siehe hierzu Literaturangaben im Anhang der Norm). Die meisten Störungen die auftreten können, sind dadurch beschrieben. Darüber hinaus gehende Störungen spielen im Bereich der Gültigkeit dieser Norm kaum eine Rolle.

3. Chemikalien / Geräte

- Blindwerte/Blindwertschwankungen:

Die ICP-MS ist ein sehr nachweisstarkes Verfahren, dessen Nachweisvermögen im Wesentlichen limitiert wird durch die Blindwerte der verwendeten Chemiekalien und Geräte. Die Schwankungen dieser Blindwerte können erheblich sein. Deshalb ist der untere Anwendungsbereich der Methode so gewählt worden, daß die Blindwertproblematik in der Regel keine Probleme bereiten sollte (s. Tabelle 1). Weitere Angaben zur Handhabung der Blindwerte sind in den Kapiteln 7 und 8 der Norm beschrieben. Siehe hierzu auch die Anlagen 8,18,19 und 20).

Tabelle 1: Untere Grenze des Anwendungsbereichs Vergleich mit den Blindwerten des Ringversuchs

Element	unterer Grenze des Anwendungsbereich DIN Norm	Blindwerte Ringversuch Probe 1 Oberflächenwasser Spannweite	Nachweisgrenzen
	(ng/L)	(ng/L)	(ng/L)
As	1000	20 - 2100 (240)	1-10
Ba	3000	1 - 900 (280)	1-10
Cd	500	2 - 200 (50)	1-10
Co	200	10 - 280 (60)	1
Cr	1000	10 - 1200 (470)	10-100
Cu	100-200	60 - 1900 (300)	1-10
Mn	3000	2 - 2100 (340)	1-10
Mo	300-500	4- 1000 (100)	1-10
Ni	1000-3000	1 - 1000 (440)	1-10
Pb	100-200	2 - 700 (176)	1
Sb	200	5 - 700 (130)	1
Sn	1000	40 - 2000 (265)	1-10
Sr	300-500	2 - 597 (140)	1
Tl	100-200	1 - 5000 (287)	1
V	1000	2 - 1000 (102)	1-10
Zn	1000-2000	50 - 2400 (300)	1-10
Zr	200	10 - 400 (243)	1-10

- Spezielle Reinigungsverfahren:

Es sind die in der Elementspurenanalytik gängigen Verfahren (z.B. Ausdämpfen der Geräte) anzuwenden. Siehe auch Kapitel 7 und 8 der Norm.

- Haltbarkeit von Chemikalien, Lösungen, Standards:

Die Haltbarkeit von Kalibrierstandards ist sowohl element-, als auch konzentrationsabhängig. Hierzu wurden einige Versuche durchgeführt (s. Anlage 1). Alle vorhandenen Erkenntnisse sind in die Kapitel 8.7 und 8.10.1. der Norm eingearbeitet worden.

Stabilität der Geräteparameter siehe hierzu Kapitel 11.1 der Norm.

Häufig auftretende Kontaminationen / Hinweise zur Vermeidung:

Speziell durch eine Reihe von Allgegenwartselementen (z.B. Aluminium, Calcium, Natrium, Zink) kann es zur Kontamination der Reagenzien, sowie der Meß- und Bezugslösungen kommen. Vermeiden lassen sich solche Störungen z. B. durch den Einsatz von "cleanbenches" zur Probenvorbereitung, der Reinigung der Laborzuluft, bzw. dem Einsatz von Laminarfloweinrichtungen im Bereich der Autosampler.

Allerdings sind durch die im Vergleich zu den Nachweisgrenzen recht hohen unteren Anwendungsbereichen eine große Zahl dieser Kontaminationen bei der Anwendung dieser Norm nicht sehr kritisch. Siehe hierzu auch Kapitel 5.3.3. und 8.1 der Norm.

- chromatographische Verfahren: getestete Trennphasen (auch im Test ungeeignete Trennbedingungen):
 entfällt.
 - Verfügbarkeit von Standard- und/oder Referenzmaterialien

Einzelelementstandards (auch zertifiziert) werden von allen etablierten Reagenzienherstelllern angeboten (z.B. Merck, Alfa, Baker, Kraft). Referenzmaterialien sind ebenfalls erhältlich (z.B. BAM oder NBS).

4. Proben / Probenaufbereitung

- Hinweise zur Probenentnahme siehe Kapitel 9 der Norm.
- Probenstabilität / Probenkonservierung:
 Hinweise hierzu finden sich in Kapitel 9 der Norm sowie in den dort zitierten Probenahmenormen. Bei hydrolsyeempfindlichen Elementen (z.B. V), ist für eine ausreichende Stabilisierung z.B: durch den Zusatz einer entsprechenden Menge Salzsäure zu sorgen.

Jeder zusätzliche Arbeitsschritt mit der zu analysierenden Substanz birgt die Gefahr von Kontaminationen (speziell bei Allgegenwartselementen z.B. Al, Zn, oder Na) oder Elementverlusten (z.B. durch Absorption an Gefäßwänden) und ist deshalb so weit wie möglich zu vermeiden.

"clean up" : keine Angaben

5. Kalibrierung

- Art der Kalibrierung:

Es wird in der Regel eine Zweipunktkalibrierung durchgeführt. Da die Kali brierung bei der ICP-MS unkritisch ist (Linearität über mehrere Dekaden, siehe Kapitel Arbeitsbereich) war eine eingehende Bearbeitung dieses Themas nicht notwendig.

Weitere Einzelheiten sind im Kapitel 11.2 der Norm beschrieben.

- Verwendete Referenz- / Kontroll- / Kalibriersubstanzen :

Kontroll- und Kalibriersubstanzen können aus käuflichen, zertifizierten Einzelelementstadards hergestellt werden. Über die Haltbarkeit sind in Kapitel 8 Reagenzien der Norm Angaben gemacht (siehe hierzu auch Anlage 1). Der Einsatz von zertifiziertem Referenzmaterial zur Kalibrierung ist auf Grund der Verfügbarkeit der Einzelelementstadards nicht sinnvoll.

- Präzision bei unterschiedlichen Konzentrationsniveaus:

Spezielle Untersuchungen über die Präzision der Kalibrierung bei unterschiedlichen Konzentrationsniveaus sind nicht durchgeführt worden. Allerdings sind aus der Auswertung der Ringversuche Angaben über die Präzision des *Verfahrens* auf unterschiedlichen Konzentrationsniveaus zu erhalten. Einen Überblick hierzu gibt Tabelle 2. Erwartungsgemäß ist im unteren Konzentrationsniveau die Präzision geringer als im höheren Niveau.

Tabelle 2: Abhängigkeit des Variationskoeffizienten vom Gehalt Prozentualer Anteil der Ergebnisse

Variationskoeffizent Gehalt in µg/L	1-10 %	10-20%	20-30%	über 30%
0,1 - 1	20%	20%	20%	40%
1,0 - 10	33%	33%	33%	-
10 - 50	80 %		20%	-
50 - 100	100%		-	-
100 - 200	100 %	-	_	_
über 200	90 %	10%	_	-

6. Untersuchungen zur Richtigkeit

Zur Überprüfung der Richtigkeit wurde ein synthetischer Standard aus Einzelelementstadards hergestellt. Die Konzentrationsniveaus lagen zwischen 1 und 250 µg/L. Die Wiederfindungsraten lagen zwischen 97 und 112%. Es gab keine signifikante Abhängigkeit der Wiederfindung vom Konzentrationsniveau. Auffällig war lediglich die sehr hohe Vergleichsstandardabweichung beim Element Vanadium. Dies ist vermutlich darauf zurückzuführen, daß einige Teilnehmer die Störung durch in der Lösung enthaltenes Chlorid nicht berücksichtigt haben. Alle weiteren Einzelheiten sind in Anlage 23 zusammengefaßt.

verwendetes Referenzmaterial:

siehe oben

- Blindwerte siehe Tabelle 1 und Anlage 8
- Abweichung vom Sollwert bei unterschiedlichen Konzentrationen: siehe Ausführungen zu Punkt 6
- 7. Untersuchungen zur Wiederfindung siehe Ausführungen zu Punkt 6
- 8. Probleme bei der Probenuntersuchung / Testdurchführung
 - Störungen

siehe Norm Kapitel 5 und 5.3.3.

Störungen durch Polyatomionen : siehe Anlage 3 und 6
Störungen durch Barium (doppelt geladen) : siehe Anlage 2 und 6
Störungen durch Calciumoxid : siehe Anlage 4 und 6
Störungen durch Chlorid : siehe Anlage 5 und 6

Diese Störungen sind geräteabhängig und von den Einstellungsparametern des Interfaces abhängig (Gasströme, Leistung des Plasmas, Ansaugrate der Probenlösung, u.a.).

- besondere Durchführungsschwierigkeiten : keine

9. Verfahrenskenndaten zur Kontrolle der Richtigkeit, Präzision, Robustheit (aus Ringversuchen):

siehe Kapitel 15 der Norm mit den Tabellen 5 bis 7 und folgende Anlagen:

- analysierte Parameter (Anlagen 21,22,23)
- verwendete Referenzmaterialien (Anlagen 9 und 10)
- untersuchte Matrices (Anlagen 9 und 10)
- untersuchte Konzentrationsniveaus (Anlagen 21,22,23)
- Zahl der teilnehmenden Labors (Anlagen 21,22,23)
- Angaben zu Ausreißern (Anlagen 11 bis 16)

- Wiederholvariationskoeffizient (Anlagen 21,22,23)
- Vergleichsvariationskoeffizient (Anlagen 21,22,23)
- Nachweis- und Bestimmungsgrenze (Anlage 7)
- ggf. Vergleich mit Ergebnissen anderer Verfahren (Anlagen 24,25)

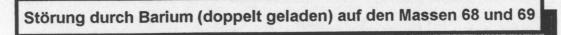
Zusätzliche Validierungskriterien für biologische Testverfahren: nicht relevant

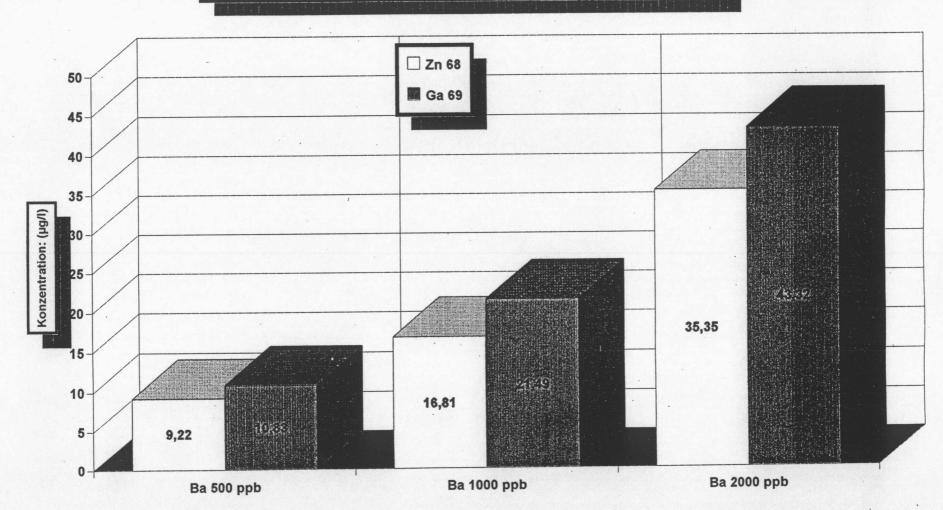
Stabilität von Kalibrierstandards

Standard-1

je 10 mg/l in HNO3

Meßlösung 10 µg/l (frisch bereitet)


% - Abweichung


	5 Tage	4 Wochen	4 Monate	7 Monate
Li	5	5	-4	0
Be	5	3	1	4
Cr	1	4	3	7
Ni	6	1	3	7
Co	7	0	3 2	7
Ga	. 7	-2	2	7
As	3	-4	-2	3
Cd	1	-3	-1	4
In	-1	-2	-2	
La	-3	-1	-3	3
Ce	-2	-1	-1	6
Nd	-3	0	-2	6
Gd	1	1	0	9
Yb	-4	2	-37	-30
TI	-3	-1	-2	-1.
Pb	-3	-1	1	0
Bi	-1	-1	. 0	1
Th	4	-3	2	4
U	0	-1	-1	0

Standard-2 je 10 mg/l in HNO3

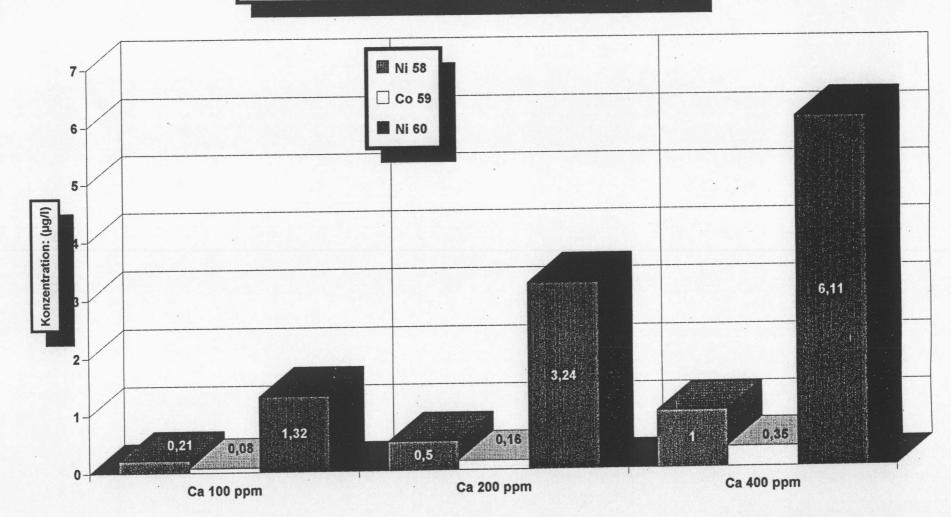
Meßlösung 10 µg/l (frisch bereitet)

		4 Wochen	% - Abweichung
	Matrix F	INO3	
Au	1	-4	
Nb	-3	-2	
Pd	3	-1	
Pt	-4	1	
Sn	15	2	
Ta	-3	-2	
Ti	0	-2	
W	-6	-4	
Zr	10	13	
	Matrix HNO	3/HCI/HF	
Au	13	-3	
Nb	-1	0	
Pd	2	-3	
Pt	1	Ö	
			LUA Felenene D EFCUED
Sn	-1	0	LUA Erlangen P.FECHER
Ta	3	-7	25.04.94
Ti	1	1	Landesuntersuchungsamt
W	-1	1	f. d. Gesundheitswesen Nordbayern
Zr	11	. 18	Henkestraße 9 - 11 91054 Erlangen Postfach 32 29 91020 Erlangen

Bayer. Landesamt für Wasserwirtschaft Institut für Wasserforschung Kaulbachstraße 37. 80539 München

col-

ArCl, CaCl

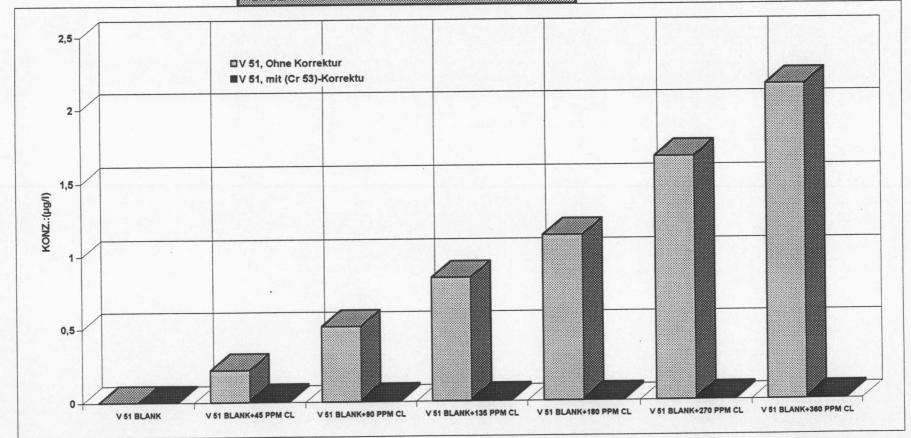

Störungen durch Polyatomionen

 $2,1 \mu g/1$

Se77

100 mg/l Ca Ca40018 $1,5 \mu g/1$ Ni58 Ca42018 Ca44016, Ni60 $6 \mu g/1$ 100 mg/l K $0,55 \mu g/1$ KO Mn55 100 mg/l Na NaAr Cu63 3 μ g/1 Cu65 100 mg/l Mg Zn64 1,5 μ g/l MgAr, Zn66 100 mg/l Cl Clo $0,4 \mu g/1$ V51 1,2 μ g/l 0,5 μ g/l Clo, Clost Cr53 ArCl, CaCl As75

Bayer. Landesamt für Wasserwirtschaft Institut für Wasserforschung Kaulbachstraße 37, 80539 München


4.10

-22-

STÖRUNG DURCH CHLORID AUF DER MASSE 51 (VANADIUM)

	ELEMENT		CC	ONC.:(UG/L)		
	PLUS AUFSTOC	KUNG	V 51 U	NKOR.	V 51	KOR.
V 5 1 2 1 A	NK			0001		10(0)
V 51 BLA	NK+45 PPM	CL	0	2189	0,1	1100
V 51 BLA	NK+90 PPM	CL	0	5134	0,1	000
V 51 BLA	NK+135 PPA	1 CL	0	8481	0,1	3106
V 51 BLA	NK+180 PPA	1 CL	1	1359	0.	
V 51 BLA	NK+270 PPA	1 CL	1	6645	0,	
	NK+360 PPA		2	.1563	0,	0.00

NOTIZ: INTERELEMENTGLEICHUNG V 51 = V 51 - 3,127 x Gr 53 + 0,3534 x Cr 52

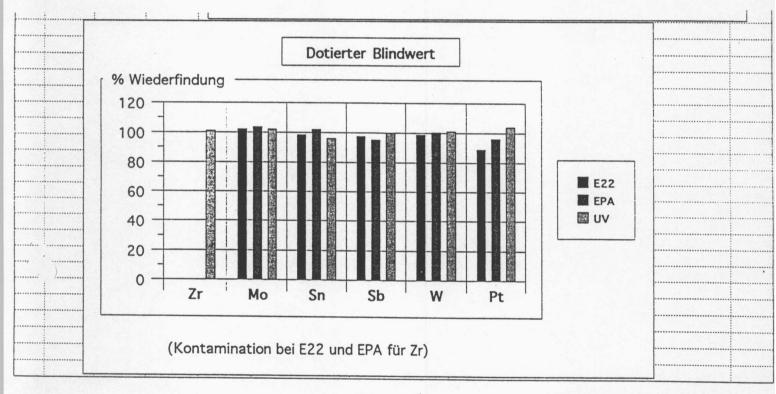
Bayer. Landesamt für Wasserwirtschaft
Institut für Wasserforschung
Kaulbachstraße 37, 80539 München

La de

Hauptabteilung Laboratorium Postfach 103242 · 45032 Essen Kronprinzenstr. 37 · 45128 Essen Essen, den 28.09.94

Frank

Bestimmung der Größe von Störungen durch Matrixelemente


Es wurde die Matrixlösung nach Punkt 7.9 der Arbeitsvorschrift mit der folgenden Zusammensetzung untersucht:

ß	(k)	10 mg/l	
ß	(Na, Mg)	20 mg/l	mus getreunt
ß	(Ca)	200 mg/l	nach Element
ß	(Cl)	300 mg/l	ans we the
ß	(PO ₄)	25 mg/l	Rus 1572/95
ß	(SO ₄)	100 mg/l	1-07

In dieser Lösung wurden die Interferenzen durch Polyatom-Ionen auf folgenden Massen bestimmt:

Masse	gestörtes Isotop	vorgetäuschte Konzentration (µg/l)
46	Titan	113
47	Titan	49
49	Titan	1.9
51	Vanadium	2,8
53	Chrom	8,7
56	Eisen	63
59	Cobalt	0,5
60	Nickel	6,4
62	Nickel	2,5
65	Kupfer	1,7
66	Zink	1,4
75	Arsen	3,6
77	Selen	15

/!	Nachweis-	Bestimmungs-
µg/l	grenze	grenze
AI 27	1,1	3,0
As 75 kor.	3,2	10,0
B 11	5,8	18,0
Ba 138	0,3	1,0
Be 9	3,6	10,0
Ca 43	45,4	150,0
Cd 111	0,2	0,5
Cd 114	0,2	0,5
Co 59	0,2	0,5
Cr 52	0,4	1,0
Cr 53	0,4	1,0
Cu 63	0,2	1,0
Cu65	0,2	0,5
Mn 55	0,3	1,0
Mo 98	0,3	1,0
Ni 58 kor.	0,3	1,0
Ni 60 kor.	0,2	0,5
Pb208	0,3	1,0
Sb 121	0,3	1,0
Sb 123	0,3	1,0
Se 82 kor.	3,8	12,0
TI 205	0,3	1,0
V 51 kor.	0,3	1,0
Zn 66	3,8	12,0
Zn 68	4,8	15,0

9194

Landesuntorsuchungsamt
f. d. Gesundheitswesen Nordbayerk
Henkestraße 9 - 11 91054 Erlangen
Postfach 32 29 91020 Erlangek

Dr. Fecher

ICP-MS Ringversuch

Herkunft und Vorbereitung der Proben

Probe 1: Oberflächenwasser

Herkunft:

Harz

Probenahme:

Dr. Siewers

Bundesamt für Geowissenschaften

Dotierung:

Dr.Siewers

Bundesamt für Geowissenschaften

Probenvorbereitung: AI-F Analytik Bayer AG Leverkusen

Probe 2: Königswasser

Herkunft:

Labor Dr. Fülling / Remscheid

(laborinterner Standard)

Probenvorbereitung: AI-F Analytik Bayer AG Leverkusen

Probe 3: synthetische Standard

Herkunft:

Hergestellt aus Einzelelementstandards der

Firma Kraft (Duisburg) in AI-F Analytik

der Bayer AG Leverkusen

Probenvorbereitung: AI-F Analytik Bayer AG Leverkusen

Probenidentifikation	Mg/L	Ag	Al	As	В	Ba	Be	Bi	Br	(Ca)	cd	Ce	Co	
Meitze Meitze, aufgest <i>ockt</i>	, , ,	0.022	103 103	0.61 7.15	131 131	45.4 46.0	0.095	0.008	44.3	31000 26300	0.065	3.05	2.42 2.48	
Probenidentifikation		Cr	Cs	Cu	(Fe)	Ga	Ge	Hf	Ħg	In	ı	(K)	La	
Meitze Meitze, aufgest <i>OZKO</i>		0.85	0.018	27.9 28.1	1690 1830	0.045	0.016 0.016	0.017	005 005	001 0.001	1.52	4870 5630	1.37	
Probenidentifikation		Li	(Mg)	Mn	Мо	(Na)	Nb	Ni	(PO4)	Pb	Rb	Sb	Sc	
Meitze Meitze, aufgest <i>ork</i> L		4.32	4600 4610	207 208	4.83	20600 41100	0.021	6.38	855 969	13.3	8.34	0.17	2.18	
Probenidentifikation		(Se)	Sn	sr	Ta	Te	Th	Ti	т1	σ	٧	W	¥	
Meitze Meitze, aufgestorkt		0.29	1.12	128 128	0.007	005 0.015	0.052	2.79	0.020	0.046	1.09	0.034	1.26	

29.2 29.1 0.37

Probenidentifikation

Meitze Meitze, aufgestork

ICP5 .DAT ICP-MS ANALYSEN:

Einsender : Hr. Dr. Siewers

Abt.Nr.

Probe-Nr. : Meitze - Meitze aufgestockt

Labor-Nr. :

Probenzahl: 2

Bachwasser, Bergen Probenart:

Konzentrationsangaben in μ g/l (ppb)

Standardabweichungen für je 10 Messungen : normal < 5 %

teilw. > 5 %

Probenpräparation:

: Wasserproben mit 1 Vol.-% HNO3 angesäuert Präparation

: August 95 Probeneingang

: 26.08.1995 Analytik

: Fr. Prokscha, Hr. Lorenz, Hr. Hagendorf Analytiker

Referatsleiter : Hr. Dr. Siewers

copy b4m401::\$b413lorenz_:[icp_a]Meitze.cmp Die Analysenergebnisse sind abrufbar:

ICP-MS Ringversuch / Kenndaten

<u>Übersicht über Ausreißer sowie Einzel- und</u> <u>Mittelwerte</u>

and the second s	Gesamt	Probe 1	Probe 2	Probe3
Zahl der Mittelwerte	1957	638	657	662
Mittelwerte pro Labor		15,95	16,4	16,55
Zahl der Einzelwerte	7358	2252	2456	2650
Einzelwerte pro Labor		63,6	65,4	66,1
Zahl der Ausreißer	116	57	30	29
% Ausreißer		8,7	4,5	4,3

ICP-MS Ringversuch / Kenndaten

Anzahl der Ausreißer (alle Parameter)

Parameter:	Zahl der Ausreißer
Со	2
Cu	3
Mn	3
Sb	4
Sr	4
Zn	4
Sn	4
Cr	5
As	6
Mo	6
Pb	8
Ba	9
Zr	9
Cd	9
Ni	11
V	11
Tl	13

ICP-MS Ringversuch / Kenndaten

Zahl der Ausreißer pro Labor

Zahl derAusreißer	Zahl der Labors	Ausreißeranteil (%)		
0	13	0		
1	8	2,05		
2	8	4,1		
3	0	6,1		
4	3	8,2		
5	4	10,2		
6	2	12,2		
7	2	14,3		

Durchschnittlicher Ausreißeranteil pro Labor: 2,05

Ausreißerlabors

Probe 1: Oberflächenwasser

Parameter	Ausreißer Typ 1	Ausreißer Typ 2	Ausreißer Typ 3
Sb		41	
As	13	46	
Ba	2	102, 13	
Cr			
Co		31	
Cu		43	
Mn		17	
Mo		13	
Ni	15	14, 41, 45, 49	
Sr			
V		18, 31, 46	
Zn		37, 39, 43	
Sn	14	19	
Zr		102, 16, 49	
Pb		9	
Tl		2, 38	40
Cd		102, 15	

Ausreißer vom Typ 1:

laborinterner Ausreißer

Ausreißer vom Typ 2:

abweichender Labormittelwert

Ausreißer vom Typ 3:

zu große Standardabweichung

-24-

Ausreißerlabors

Probe 2: Königswasseraufschluß

Parameter	Ausreißer Typ 1	Ausreißer Typ 2	Ausreißer Typ 3		
Sb		9, 41, 46			
As	13	46			
Ba		13, 14, 26			
Cr		12, 14			
Co		14			
Cu		14, 40			
Mn		14			
Mo		13			
Ni	17	20, 41, 49			
Sr	2, 13				
V		31, 46			
Zn		37			
Sn		1			
Zr	41	9, 49			
Pb		13, 14, 20			
Tl		15, 31	101		
Cd		12, 15			

Ausreißer vom Typ 1:

laborinterner Ausreißer

Ausreißer vom Typ 2:

abweichender Labormittelwert zu große Standardabweichung

Ausreißer vom Typ 3:

-25-

Ausreißerlabors

Probe 3: synthetischer Standard

	A 80 Tree 1	Ausreißer Typ 2	Ausreißer Typ 3
Parameter	Ausreißer Typ 1		II 1994 III. ulleathaineachadhaidealaineathaileathaile An "adheathailea
Sb			
As		40, 46	
Ba		13, 20, 41	
Cr		2, 20, 49	
Со			
Cu			
Mn		36	
Mo	19	102	13, 26
Ni	20, 31		
Sr	13, 43		
V		16, 19, 31, 40, 46	
Zn			
Sn	2	1	
Zr		29, 42, 49	
Pb	26	12, 13, 40	
Tl	14, 37	15, 36, 40	2, 13
Cd		12, 15, 27, 29	13

Ausreißer vom Typ 1:

laborinterner Ausreißer

Ausreißer vom Typ 2:

abweichender Labormittelwert

Ausreißer vom Typ 3:

zu große Standardabweichung

-26-

Abhängigkeit des Variationskoeffizienten vom Gehalt

Variationskoeffizent Gehalt in µg/L	1-10 %	10-20%	20-30%	über 30%
0,1 - 1	1	1	1	2
1,0 - 10	5	5	5	0
10 - 50	8	0	2	0.
50 - 100	3	0	0	0
100 - 200	8	0	0	0
über 200	9	1	0	0

Untere Grenze des Anwendungsbereichs

Vergleich mit den Nachweisgrenzen der ICP-MS

Element	unterer Grenze des Anwendungbereich DIN Norm	Nachweisgrenze
	(ng /L)	(ng/L)
As	1000	1-10
Ba	3000	1-10
Cd	500	1-10
Co	200	1
Cr	1000	10-100
Cu	100-200	1-10
Mn	3000	- 1-10
Mo	300-500	1-10
Ni	1000-3000	1-10
Pb	100-200	1
Sb	200	1
Sn	1000	1-10
Sr	300-500	1
Tl	100-200	1
V	1000	1-10
Zn	1000-2000	1-10
Zr	200	1-10

Untere Grenze des Anwendungsbereichs

Vergleich mit den Blindwerte des Ringversuchs

Element	unterer Grenze des Anwendungbereich DIN Norm	Blindwerte Ringversuch Probe 1 Oberflächenwasser	Nachweisgrenze
	(ng/L)	(ng /L)	(ng/L)
As	1000	240	1-10
Ba	3000	280	1-10
Cd	500	50	1-10
Co	200	60	1
Cr	1000	470	10-100
Cu	100-200	300	1-10
Mn	3000	340	1-10
Mo	300-500	100	1-10
Ni	1000-3000	440	1-10
Pb	100-200	176	1
Sb	200	130	1
Sn	1000	265	1-10
Sr	300-500	140	1
Tl	100-200	287	1
V	1000	102	1-10
Zn	1000-2000	300	1-10
Zr	200	243	1-10

<u>Untere Grenze des Anwendungsbereichs</u> <u>Vergleich mit den Blindwerte des Ringversuchs</u>

Element	unterer Grenze des	Blindwerte Ringversuch	Nachweisgrenzen
	Anwendungbereich DIN Norm	Probe 1	
	Direction	Oberflächenwasser	
		Spannweite	
	(ng /L)	(ng/L)	(ng/L)
As	1000	20 - 2100 (240)	1-10
Ba	3000	1 - 900 (280)	1-10
Cd	500	2 - 200 (50)	1-10
Co	200	10 - 280 (60)	1
Cr	1000	10 - 1200 (470)	10-100
Cu	100-200	60 - 1900 (300)	1-10
Mn	3000	2 - 2100 (340)	1-10
Mo	300-500	4- 1000 (100)	1-10
Ni	1000-3000	1 - 1000 (440)	1-10
Pb	100-200	2 - 700 (176)	1
Sb	200	5 - 700 (130)	1
Sn	1000	40 - 2000 (265)	1-10
Sr	300-500	2 - 597 (140)	1
Tl	100-200	1 - 5000 (287)	1
V	1000	2 - 1000 (102)	1-10
Zn	1000-2000	50 - 2400 (300)	1-10
Zr	200	10 - 400 (243)	1-10

Lusammenfassung der Ergebnis

Probe 1: Oberflächenwasser (alle Angaben in µg/L)

Parameter	L	Ŋ	NAP [%]	X	SR	VR	SI	VI	Spannweite der Labormittelwerte
Sb	31	121	3,2	0,330	0,2970	89,9	0,1204	36,4	0,100 - 1,100
As	37	145	3,3	6,90	0,954	13,8	0,432	6,3	4,89 - 9,16
Ba	38	149	5,7	41,1	2,53	6,1	1,04	2,5	36,1 - 45,8
Cr	38	151	0,0	3,39	0,634	18,7	0,294	8,7	2,23 - 5,00
Со	38	151	2,6	2,33	0,269	11,6	0,140	6,0	1,64 - 2,82
Cu	38	151	2,6	26,7	2,02	7,6	0,93	3,5	22,0 - 30,6
Mn	39	155	2,5	205	13,2	6,4	5,9	2,9	173 - 230
Mo	38	150	2,6	4,455	0,402	9,0	0,187	4,2	3,68 - 5,44
Ni	35	137	11,0	5,44	0,786	14,5	0,397	7,3	4,27 - 7,10
Sr	40	158	0,0	117	8,1	6,9	3,4	3,0	97 - 135
V	33	129	8,5	1,15	0,311	27,0	0,121	10,5	0,64 - 1,80
Zn	36	143	7,7	27,6	2,56	9,3	1,43	5,2	23,5 - 33,1
Sn	34	132	3,6	1,19	0,241	20,3	0,157	13,2	0,76 - 1,64
Zr	- 30	113	9,6	0,98	0,729	74,5	0,257	26,3	0,248 - 2,450
Pb	39	155	2,5	13,6	1,13	8,3	0,64	4,7	11,6 - 16,0
Tl	31	124	8,1	0,272	0,0460	16,9	0,0292	10,7	0,200 - 0,368
Cd	37	147	5,2	5,75	0,491	8,5	0,234	4,1	4,78 - 6,87

L Anzahl der Laboratorien nach Ausreißereliminierung
N Anzahl der Analysenergebnisse nach Ausreißereliminierung
NAP Ausreißeranteil in Prozent
X Gesamtmittelwert aller ausreißerfreien Analysenwerte

SR Vergleichsstandardabweichung

VR Vergleichsvariationskoeffizient

SI Wiederholstandardabweichung

VI Wiederholvariationskoeffizient

Zusammenfassung der Ergebnisse

Probe 2: Königswasseraufschluß

Parameter	L	N	NAP [%]	x	SR	VR	SI	VI 15	Spannweite der Labormittelwerte
Sb	36	143	7,7	170	12,5	7,4	5,5	3,2	144 - 199
As	37	145	3,3	20,1	4,36	21,7	1,44	7,2	7,9 - 30,7
Ba	37	147	7,0	437	19,6	4,5	11,7	2,7	393 - 469
Cr	38	151	5,0	363	24,1	6,6	12,3	3,4	301 - 413
Co	39	154	2,5	145	8,4	5,8	5,7	3,9	127 - 158
Cu	38	150	5,1	3334	239,6	7,2	117,0	3,5	2768 - 3798
Mn	39	155	2,5	1029	73,2	7,1	36,4	3,5	882 - 1170
Mo	39	154	2,5	15,2	1,14	7,5	0,57	3,7	12,5 - 17,2
Ni	37	146	8,2	184	17,4	9,4	7,2	3,9	140 - 208
Sr	40	155	1,3	89,9	6,21	6,9	3,37	3,8	75,6 - 100,0
V	36	140	5,4	44,0	8,87	20,2	2,06	4,7	22,5 - 68,7
Zn	38	150	2,6	711	58,1	8,2	32,9	4,6	576 - 798
Sn	38	150	2,6	415	37,4	9,0	16,3	3,9	326 - 494
Zr	31	117	7,1	2,87	0,752	26,2	0,403	14,0	1,79 - 4,10
Pb	37	146	7,6	793	49,0	6,2	27,9	3,5	686 - 871
Tl	29	112	8,9	0,276	0,0765	27,7	0,0494	17,9	0,130 - 0,426
Cd	37	141	5,4	2,11	0,542	25,7	0,227	10,8	0,50 - 3,0

Anzahl der Laboratorien nach Ausreißereliminierung L Anzahl der Analysenergebnisse nach Ausreißereliminierung N NAP Ausreißeranteil in Prozent Gesamtmittelwert aller ausreißerfreien Analysenwerte X

SR Vergleichsstandardabweichung

VR Vergleichsvariationskoeffizient SI Wiederholstandardabweichung

VI Wiederholvariationskoeffizient

Übersicht der Ergebnisse

Probe 3: synthetischer Standard (alle Angaben in µg/L)

Parameter	Ъ	N	NAP	Xsoli	x	WFR	SR	VR	SI	VI	Spannweite der Labormittelwerte
Sb	39	154	0,0	114	114	99,9	11,1	9,8	4,0	3,5	96 - 142
As	37	146	5,2	192	186	97,1	14,8	7,9	6,4	3,4	150 - 214
Ba	37	147	7,5	8,0	7,90	98,8	0,580	7,3	0,319	4,0	6,88 - 8,95
Cr	36	142	7,8	9,0	9,35	103,9	1,986	21,2	0,721	7,7	5,74 - 13,38
Co	40	159	0,0	42	41,5	98,8	3,02	7,3	1,55	3,7	35,2 - 45,8
Cu	39	155	0,0	48	48,2	100,3	3,83	8,0	1,64	3,4	40,4 - 54,2
Mn	39	155	2,5	97	95,3	98,2	6,52	6,8	3,05	3,2	79,1 - 104,8
Mo	37	146	8,2	7,0	6,85	97,8	0,474	6,9	0,256	3,7	5,96 - 7,80
Ni	40	157	1,3	93,0	91,2	98,0	8,55	9,4	3,91	4,3	69,0 - 103,3
Sr	40	157	1,3	24,0	23,3	97,1	1,66	7,1	1,07	4,6	20,0 - 25,5
V	35	138	12,7	245	240	97,9	26,9	11,2	11,3	4,7	180 - 300
Zn	39	155	0,0	183	188	102,5	17,2	9,2	7,1	3,8	149 - 232
Sn	38	149	3,2	120	117	97,9	8,4	7,1	4,2	3,5	101 - 136
Zr	31	119	7,8	4,0	4,47	111,8	0,967	21,6	0,334	7,5	2,72 - 6,55
Pb	38	142	8,4	6,0	6,43	107,2	0,491	7,6	0,287	4,5	5,20 - 7,53
Tl	31	121	14,8	0,9	0,892	99,1	0,0597	6,7	0,0419	4,7	0,800 - 1,027
Cd	34	135	12,9	2,0	1,98	99,1	0,190	9,6	0,135	6,8	1,59 - 2,21

Anzahl der Laboratorien nach Ausreißereliminierung L Anzahl der Analysenergebnisse nach Ausreißereliminierung N Ausreißeranteil in Prozent NAP Gesamtmittelwert aller ausreißerfreien Analysenwerte X

SR Vergleichsstandardabweichung

VR Vergleichsvariationskoeffizient

SI Wiederholstandardabweichung

VI Wiederholvariationskoeffizient

Vergleich der Ringversuche ICP-MS / ICP OES (E22)

Probe: Königswasseraufschluß

Parameter	L	N	NAP [%]	X	SR	VR	SI	VI	Spannweite der Labormittelwerte
Chrom	21	78	17,9	139	14	10,2	6	4,0	
Cinom	38	151	5,0	363	24,1	6,6	12,3	3,4	301 - 413
Kupfer	24	90	0	1188	65	5,4	20	1,7	
Kupici	38	150	5,1	3334	239,6	7,2	117,0	3,5	2768 - 3798
Mangan	25	93	3,1	1487	88	5,9	33	2,2	
iviangan	39	155	2,5	1029	73,2	7,1	36,4	3,5	882 - 1170
Nickel	22	86	4,4	119	23	19,7	10	8,3	
THERE	37	146	8,2	184	17,4	9,4	7,2	3,9	140 - 208
Zink	26	97	1,0	4818	269	5,6	76	1,6	
Ziiii	38	150	2,6	711	58,1	8,2	32,9	4,6	576 - 798
Blei	23	87	4,4	927	103	11,1	56	6	
Divi	37	146	7,6	793	49,0	6,2	27,9	3,5	686 - 871
Cadmium	21	78	4,9	18,7	6	30,2	3	13,9	
Cadinan	37	141	5,4	2,11	0,542	25,7	0,227	10,8	0,50 - 3,0

L Anzahl der Laboratorien nach Ausreißerelimin	ierung
N Anzahl der Analysenergebnisse nach Ausreißerelimin	ierung
NAP Ausreißeranteil in Pr	
X Gesamtmittelwert aller ausreißerfreien Analysen	werte

SR Vergleichsstandardabweichung VR Vergleichsvariationskoeffizier SI Wiederholstandardabweichung

VI Wiederholvariationskoeffizien

Arsen im Königswasseraufschluß

Vergleich der statistischen Daten

	VI (%)	VR (%)	VR/VI	WFR Standard (%)	Ausrei- Ber (%)
Arsen	7,2	21,7	3,01	97,1	3,3
ICP-MS (17 Parameter)	5,9	12,1	2,15	100,3	5,0
ICP-OES (13 Parameter)	4,1	9,7	2,66	97,5	2,8
Vorgaben DIN		< 30	ca. 2	100	< 10

VR Vergleichsvariationskoeffizient
VI Wiederholvariationskoeffizient

WFR Wiederfindungsrate